首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   55篇
  2023年   1篇
  2022年   1篇
  2021年   10篇
  2020年   11篇
  2019年   9篇
  2018年   16篇
  2017年   11篇
  2016年   24篇
  2015年   36篇
  2014年   52篇
  2013年   64篇
  2012年   78篇
  2011年   91篇
  2010年   66篇
  2009年   52篇
  2008年   65篇
  2007年   68篇
  2006年   52篇
  2005年   51篇
  2004年   42篇
  2003年   50篇
  2002年   27篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有921条查询结果,搜索用时 504 毫秒
11.
12.
To elucidate the bacterial diversity in biofilms formed on a condenser tube from a nuclear power plant, 16S rRNA gene sequences were examined using a PCR-cloning-sequencing approach. Twelve operational taxonomic units were retrieved in the clone library, and the estimated species richness was low (13.2). Most of the clones (94.7%) were affiliated with α-Proteobacteria; Planctomycetes and γ-Proteobacteria were much rarer. Interestingly, except for one clone belonging to Pseudoalteromonas, most of the sequences displayed sequence similarities <97% of those of the closest type strains. Based on 16S rRNA phylogenetic analysis, most bacteria were assigned to novel taxa above the species level. The low species richness and unusual bacterial composition may be attributable to selective pressure from chlorine in the cooling water. To prevent or control bacterial biofilms in cooling circuits, additional studies of the physiology and ecology of these species will be essential.  相似文献   
13.

Key message

Overexpression of OsGS gene modulates oxidative stress response in rice after exposure to cadmium stress. Our results describe the features of transformants with enhanced tolerance to Cd and abiotic stresses.

Abstract

Glutamine synthetase (GS) (EC 6.3.1.2) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity and abiotic stress conditions. We observed a decrease in GS enzyme activity and mRNA expression among transgenic and wild-type plants subjected to Cd stress. The decrease, however, was significantly lower in the wild type than in the transgenic plants. This was further validated by the high GS mRNA expression and enzyme activity in most of the transgenic lines. Moreover, after 10 days of exposure to Cd stress, increase in the glutamine reductase activity and low or no malondialdehyde contents were observed. These results showed that overexpression of the GS gene in rice modulated the expression of enzymes responsible for membrane peroxidation that may result in plant death.  相似文献   
14.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   
15.
To characterize the denitrifying phosphorus (P) uptake properties of “Candidatus Accumulibacter phosphatis,” a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of “Ca. Accumulibacter” and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized “Ca. Accumulibacter” subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and “Candidatus Competibacter phosphatis” [from 16.4% to 20.0%]), while the overall “Ca. Accumulibacter” abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the “Ca. Accumulibacter” clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all “Ca. Accumulibacter” clades successfully took up phosphorus in the presence of nitrate. However, the “Ca. Accumulibacter” clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by “Ca. Accumulibacter” clades occurred when nitrite was added. These results suggest that the “Ca. Accumulibacter” cells lack nitrate reduction capabilities and that P uptake by “Ca. Accumulibacter” is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and “Ca. Competibacter.”  相似文献   
16.
It has been recognized that ginsenoside Rg3 is not naturally produced in ginseng although this ginsenoside can accumulate in red ginseng as the result of a thermal process. In order to determine whether or not Rg3 is synthesized in ginseng, hairy roots were treated with methyl jasmonate (MJ). From HPLC analysis, no peak for Rg3 was observed in the controls. However, Rg3 did accumulate in hairy roots that were MJ-treated for 7?days. Rg3 content was 0.42?mg/g (dry weight). To gain more insight into the effects of MJ on UDP-glucosyltransferase (UGT) activity, we attempted to evaluate ginsenoside Rg3 biosynthesis by UGT. A new peak for putative Rg3 was observed, which was confirmed by LC-MS/MS analysis. Our findings indicate that the proteins extracted from our hairy root lines can catalyze Rg3 from Rh2. This suggests that our ginseng hairy root lines possess Rg3 biosynthesis capacity.  相似文献   
17.
Norovirus protease is an essential enzyme for proteolytic maturation of norovirus nonstructural proteins and has been implicated as a potential target for antiviral drug development. Although X‐ray structural studies of the protease give us wealth of structural information including interactions of the protease with its substrate and dimeric overall structure, the role of protein dynamics in the substrate recognition and the biological relevance of the protease dimer remain unclear. Here we determined the solution NMR structure of the 3C‐like protease from Norwalk virus (NV 3CLpro), a prototype strain of norovirus, and analyzed its backbone dynamics and hydrodynamic behavior in solution. 15N spin relaxation and analytical ultracentrifugation analyses demonstrate that NV 3CLpro is predominantly a monomer in solution. Solution structure of NV 3CLpro shows significant structural variation in C‐terminal domain compared with crystal structures and among lower energy structure ensembles. Also, 15N spin relaxation and Carr–Purcell–Meiboom–Gill (CPMG)‐based relaxation dispersion analyses reveal the dynamic properties of residues in the C‐terminal domain over a wide range of timescales. In particular, the long loop spanning residues T123–G133 show fast motion (ps‐ns), and the residues in the bII–cII region forming the large hydrophobic pocket (S2 site) undergo conformational exchanges on slower timescales (μs–ms), suggesting their important role in substrate recognition.  相似文献   
18.
In the current study, a series of pyrazole-sulfonamide derivatives (2–14) were synthesized, characterized, and the inhibition effects of the derivatives on human carbonic anhydrases (hCA I and hCA II) were investigated as in vitro. Structures of these sulfonamides were confirmed by FT-IR, 1H NMR, 13C NMR and LC–MS analysis. 1H NMR and 13C NMR revealed the tautomeric structures. hCA I and hCA II isozymes were purified from human erythrocytes and inhibitory effects of newly synthesized sulfonamides on esterase activities of these isoenzymes have been studied. The Ki values of compounds were 0.062–1.278 μM for hCA I and 0.012–0.379 μM for hCA II. The inhibition effects of 7 for hCA I and 4 for hCA II isozymes were almost in nanomolar concentration range.  相似文献   
19.
The algicidal effects of the thiazolidinedione derivative TD49 on Heterosigma akashiwo and Chattonella marina (Raphidophyceae) were assessed, and the response of the planktonic community and environment to the algicide was evaluated in a microcosm, quantifying 12 L. The abundance of over 80 % of H. akashiwo and C. marina declined in a day significantly in microcosms to which TD49 was added (final concentration 2 μM), and this was correlated with an abrupt decline in the culture pH. The number of protists (i.e., ciliates) other than H. akashiwo and C. marina gradually increased with time in the TD49 treatments, implying that the decline in numbers of H. akashiwo and C. marina cells resulting from TD49 treatment was a major factor in the growth of the other organisms. However, TD49 may be toxic to aquatic zooplankton communities, even though it is a highly selective algicide for harmful algae bloom species. The study indicates that TD49 is an effective agent for the control for H. akashiwo and C. marina blooms in enclosed and eutrophic water bodies.  相似文献   
20.
ATP‐dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double‐strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here, Methanococcus jannaschii MR‐ATPγS‐DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATPγS‐bound Rad50 nucleotide‐binding domains. Duplex DNA cannot access the Mre11 active site in the ATP‐free full‐length MR complex. ATP hydrolysis drives rotation of the nucleotide‐binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis‐driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号